Lesson plan

Name of the faculty	:	Mr. Manoj Bansal
Discipline	:	Electrical & Electronics Engineering
Semester	:	5 th
Subject	:	Power System-1(Paper Code: PCC-EE-301-G)
Lesson Plan Duration	:	15 weeks (From August, 2020 to November 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecture-02, Practical-01

Week	Theory		Practical		
	Lecture day	Topic(Including assignment/test)	Practical Day	Торіс	
1 st	1 st	Introduction, Review of Three- phase systemsAnalysis of simple three-phase circuits	1 st	To determine negative and zero sequence reactances of an alternator	
2 nd	1 st	Single-phase representation of balance three-phase networkPhase shift in star-delta transformation, sequence impedances	- 2 nd	To determine fault current for L-G, L-L, L-L-G and L-L-L faults at the terminals of an alternator at very low excitation	
3 rd	1 st	The one-line diagram and the impedance or reactance diagram Per unit (PU) system	3 rd	To study the IDMT over current relay and determine the time current characteristics	
4 th	1 st	Complex power, The steady state model of synchronous machineTransmission of electric power, Representation of loads	4 th	To study percentage differential relay	
5 th	1 st	Method of Symmetrical Components	5th	To study Impedance, MHO and Reactance type	

	2 nd	positive, negative and zero sequences		distance relays		
6 th	1 st 2 nd	Balanced and Unbalanced Faults Representation of generators	6 th	To study ferranti effect and voltage distribution in H.V. long transmission line using transmission line model.		
7 th	Sessional -I Examination+Activity					
8 th	1 st	Representation of lines and transformers in sequence networksComputation of Fault Currents	8 th	To study operation of oil testing set		
9 th	1 st 2 nd	Neutral Grounding Switchgear and protection: Types of Circuit Breakers	- 9 th	To understand PV modules and their characteristics like open circuit voltage, short circuit current, Fill factor, Efficiency		
10 th	1 st 2 nd	Attributes of Protection schemes Back-up Protection	10 th	To understand I-V and P-V characteristics of PV module with varying radiation and temperature level		
11th	1 st 2 nd	Protection schemes Over-current Protection schemes directional	11 th	To understand the I-V and P-V characteristics of series and parallel combination of PV modules.		
12 th	1 st 2 nd	distance protection differential protection and their application	12 th	To understand wind energy generation concepts like tip speed, torque and power relationship, wind speed versus power generation		

13 th	1 st 2 nd	Introduction to DC Transmission & Renewable Energy Systems DC Transmission Systems: Line- Commutated Converters (LCC)	13 th	SimulationBasedExperiments(usingMATLAB or any othersoftware)To obtain steady state,transient and sub-transientshort circuit currents in analternator	
14 th	1 st	Voltage Source Converters (VSC). LCC and VSC based dc link Real Power Flow control in a dc link. Comparison of ac and dc transmission.	14 th	To perform symmetrical fault analysis in a power system	
15th	1 st 2 nd	Solar PV systems: I-V and P-V characteristics of PV panelspower electronic interface of PV to the grid	15 th	To perform unsymmetrical fault analysis in a power system	
16 th	1 st	 Wind Energy Systems: Power curve of wind turbine. Fixed and variable speed turbines Permanent Magnetic Synchronous Generators and Induction Generators 			
17 th	Sessional -II Examination+Activity				

Faculty Signature